Human factors and ergonomics

Human factors and ergonomics (commonly referred to as Human Factors), is the application of psychological and physiological principles to the (engineering and) design of products, processes, and systems. The goal of human factors is to reduce human error, increase productivity, and enhance safety and comfort with a specific focus on the interaction between the human and the thing of interest. [1] https://en.wikipedia.org/wiki/Human_factors_and_ergonomics

The field is a combination of numerous disciplines, such as psychologysociologyengineeringbiomechanicsindustrial designphysiologyanthropometryinteraction designvisual designuser experience, and user interface design. In research, human factors employs the scientific method to study human behavior so that the resultant data may be applied to the four primary goals. In essence, it is the study of designing equipment, devices and processes that fit the human body and its cognitive abilities. The two terms "human factors" and "ergonomics" are essentially synonymous.[2][3][4]
The International Ergonomics Association defines ergonomics or human factors as follows:[5]
Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design to optimize human well-being and overall system performance. 

Physical ergonomics[edit]


Physical ergonomics: the science of designing user interaction with equipment and workplaces to fit the user.
Physical ergonomics is concerned with human anatomy, and some of the anthropometric, physiological and bio mechanical characteristics as they relate to physical activity.[5] Physical ergonomic principles have been widely used in the design of both consumer and industrial products. Physical ergonomics is important in the medical field, particularly to those diagnosed with physiological ailments or disorders such as arthritis (both chronic and temporary) or carpal tunnel syndrome. Pressure that is insignificant or imperceptible to those unaffected by these disorders may be very painful, or render a device unusable, for those who are. Many ergonomically designed products are also used or recommended to treat or prevent such disorders, and to treat pressure-related chronic pain.[citation needed]
One of the most prevalent types of work-related injuries is musculoskeletal disorder. Work-related musculoskeletal disorders (WRMDs) result in persistent pain, loss of functional capacity and work disability, but their initial diagnosis is difficult because they are mainly based on complaints of pain and other symptoms.[11] Every year, 1.8 million U.S. workers experience WRMDs and nearly 600,000 of the injuries are serious enough to cause workers to miss work.[12]Certain jobs or work conditions cause a higher rate of worker complaints of undue strain, localized fatigue, discomfort, or pain that does not go away after overnight rest. These types of jobs are often those involving activities such as repetitive and forceful exertions; frequent, heavy, or overhead lifts; awkward work positions; or use of vibrating equipment.[13] The Occupational Safety and Health Administration (OSHA) has found substantial evidence that ergonomics programs can cut workers' compensation costs, increase productivity and decrease employee turnover.[14] Therefore, it is important to gather data to identify jobs or work conditions that are most problematic, using sources such as injury and illness logs, medical records, and job analyses.[13]

Comments